Бытовое использование терминов, которые мы использовали при рассказе об интеллекте и мышлении
Предложенные понятия и термины для них в нашем рассказе об интеллекте и мышлении, мастерстве и рассуждениях более-менее совпадают с традиционным «бытовым» словоупотреблением, они как-то представлены в культуре. Но это не означает, что с этой терминологией не будет ошибок. Нужно всегда помнить, что в словарях недаром у каждого слова приводится множество значений в разных словарных гнёздах, и смысл говоримого приходится уточнять не по словарям, а исходя из каждой ситуации использования в тексте или речи тех или иных слов. Смысл в использовании слов, а не в словарях!
Например, «познание» цепляет где-то в памяти ассоциации с когда-то (обычно много лет назад) читанными представлениями об эпистемологии/научном мышлении (а то и гносеологии, включающей ещё и религиозное, и художественное «познание»), «вывод» и «рассуждения по правилам» цепляет логику (и даже не современную математическую, а Аристотелевскую, с силлогизмами и всеми её уже сотню лет известными ограничениями). И ещё отечественные «знатоки русской научной терминологии» обязательно проявятся со своими претензиями на термины и их значения — причём они все будут предлагать каждый разное, приводя самые разные обоснования, ссылки на самые разные авторитеты. Но это нормально, мы всё равно будем использовать описанный тут набор понятий и терминов для обсуждения интеллекта и мышления: лучше иметь универсальный и маленький набор понятий, который позволяет делать объяснения/модели мира, чем много самых разных несовместимых друг с другом и никак не соотносящихся понятий из слабо связанных друг с другом объяснений/теорий/дисциплин/моделей. Универсальность и компактность объяснений рулят, в том числе в трансдисциплинах**.**Универсальность как свойство хороших объяснений особо подчёркивал Дэвид Дойч.
Затруднения обычно возникают, когда мы говорим о частях общего интеллекта как вычислителя и частях мышления как частях функциональности общего интеллекта: о трансдисциплинарных практиках. Проблема с трансдисциплинами в том, что они используются для объяснений как в прикладных предметных областях, так и для объяснений самих себя! Условно можно считать эти трансдициплины выстроенными в некоторое подобие «стека» (stack, «стопка»). Описанию современного состояния этих трансдициплин и посвящён наш курс. Вот эти трансдициплины, которые расположены в очень приблизительном порядке задействования объяснений, «чтобы объяснить как-то дисциплины, стоящие выше, нужно использовать знание дисциплины, стоящей в стеке ниже»:
- Системная инженерия
- Методология
- Риторика
- Этика
- Эстетика
- Исследования
- Рациональность
- Логика
- Алгоритмика
- Онтология
- Теория понятий
- Физика
- Математика
- Семантика
- Собранность
- Понятизация
Конечно, все понятия и отношения из этих дисциплин никак не выстраиваются в такой «стек», это очень тесно связанный граф, никак не раскладывающийся в «последовательное объяснение вышестоящего на основе нижестоящего». Мы сделали этот стек, существенно огрубив все взаимосвязи в этом графе. Неминуемо приходится обращаться при объяснении физики к математике, но и при объяснении математики приходится обращаться к физике, но и при обсуждении семантики тоже приходится обращаться к физике, равно как и при обсуждении физики к семантике — и так буквально со всеми перечисленными трансдисциплинами. Как с этим справляться? Чтобы по последовательному описанию разобраться с графом, неминуемо содержащим «ссылки вперёд», надо просто прочесть описание два раза. В первый раз будут встречаться некоторые понятия, которые используются, но ещё не объяснены. Даже сразу можно и не сообразить, что какое-то понятие используется как термин, а не как отсылка к бытовому знанию. После первого прочтения окажется, что вычитаны из текста все объяснения. Тогда при повторном чтении текста будет уже понятно всё (хотя уверенность тут надо бы сильно понизить, люди не логические компьютеры, и нейронные сетки могут не справиться с полноценным пониманием через два последовательных чтения).
В любом случае, не надо относиться к предлагаемым в нашем курсе классификациям как к чему-то окончательному. Например, мы определяем, что мышление — это задействование рассуждений с использованием трансдисциплин (объяснительных теорий/моделей, использующихся для ускорения познания). Вопрос: если дан набор понятий и их отношений из учебника кулинарии, можем ли мы считать это «кулинарным интеллектом»? Если вы знаете про различие общего/сильного и узкого/слабого интеллекта, то можно. Если речь идёт о каком-то кулинарном трудовом кругозоре, общем понимании, как связаны друг с другом разные кулинарные практики (варка, жарка, приготовление десертов и т.д.), то тут можно допустить, что говорим о кулинарной трансдисциплине как основе для кулинарного познания — и тогда смело используем слова «кулинарный интеллект» и даже производимое им «кулинарное мышление» в ходе различных экспериментов по получению новых вкусов или новых более простых способов кулинарной обработки продуктов при сохранении прежних вкусов.
Так, для обзорных трансдисциплин, объясняющих происходящее в практиках менеджмента и инженерии, мы вполне можем говорить об менеджерском и инженерном интеллекте или мастерстве, менеджерском и инженерном мышлении как функции этого интеллекта или мастерства. Но в целом, если говорить, например, о менеджерском интеллекте, то речь идёт больше об умении разобраться с новыми проблемами в менеджменте (продвинуть мастерство менеджмента), а если говорить о менеджерском мастерстве, то речь идёт об опыте разбирательства с типовыми ситуациями, «умение не делать новичковых ошибок менеджера».
Есть ещё примеры, как люди определяют «мышления». Программисты могут вспомнить Дейкстру, который вводил виды мышления (его интересовало программистское мышление/мастерство в его отличии от физического и математического мастерства) на примерах: «Хотя во времена, к которым относится наша история, человечество не знало ЭВМ, неизвестный, нашедший это решение, был первым в мире компетентным программистом. Я рассказывал эту историю разным людям. Программистам, как правило, она нравилась, а их начальники обычно сердились все больше и больше по мере ее развития. Hастоящие математики, однако, не могли понять, в чем соль.» — это знаменитая история о туалетах[1].
Помним, что «программирование» — это для Дейкстры практика «структурного программирования», то есть дисциплина/теория алгоритмики на императивном языке с простыми структурами данных. Но вот это «чем мышление программиста отличается от мышления математика» — это оказывается важно, Дейкстра пытался разобраться, чем рассуждения с объектами программистского интереса/внимания отличаются от таковых для математиков и физиков. «Хвост коровы Маргариты — это часть стада» для системного мыслителя неправильное высказывание (нет осмысленных операций в жизни для хвоста в стаде, а вот для «хвоста у коровы»/«хвоста в корове» и для коровы в стаде — есть! Системные уровни важны, через них нельзя прыгать в мышлении!), а для математика, логика, физика — правильное. Системное мастерство по сравнению с математическим, логическим или даже физическим мастерством будут рассуждать по-разному, давать разные ответы на даже простые вопросы! Системный интеллект и математический/логический или даже физический интеллект породят разные варианты какого-то прикладного мастерства, ибо они мыслят по-разному!
Тут произошёл незаметный, но важный сдвиг в онтологическое трансдисциплинарное разбирательство: мы говорим уже не об интеллекте и мышлении, а также мастерстве и рассуждениях как таковых, а об их видах (специализациях), их экземплярах и примерах (классификациях), об их частях (композициях, именно это отношение между объектами-системами на разных системных уровнях), создании и развитии (один объект как-то создаёт и развивает другой объект, часто по цепочке создания). Мы задаёмся вопросом отношений, в которых разные экземпляры и целые множества «интеллекта», «мышления», «мастерства», «рассуждений» могут находиться друг с другом. В онтологии вопрос выбора типа отношения в трудных случаях (например, выбор специализации, классификации или даже композиции) для создания компактной теории/модели/объяснений/онтологического описания зависит от тех проблем, которые вы пытаетесь решить. Для решения каких-то проблем удобно выбрать мир состоящим из одних объектов и отношений между ними, для других проблем — выбрать по-другому. Так что пока не будем обсуждать этот вопрос более подробно, пока вы сами не займётесь исследованиями интеллекта и мышления, мастерства и рассуждения. В любом случае помним, что речь идёт о работающих вычислителях (интеллекте, мастерстве, которые реализуются работающими мозгами, компьютерами и линиями связи) и разворачивающихся во времени в них физических процессах вычисления (мышлении, рассуждениях). Так что интеллект, мастерство выделяются в окружающих людях и их компьютерах и других инструментах вниманием, равно как происходящие в ходе протекания процессов мышления и рассуждений изменения/поведение тоже выделяются изо всех изменений в окружающем мире тоже вниманием. А вот куда направлено это внимание, это и определяется трансдисциплинами, занимающимися интеллектом и мастерством, мышлением и рассуждениями.
И, конечно, познание и рассуждение тесно связаны ещё и тем, что в машинном интеллекте обсуждается как «обучение/познание всю жизнь»/lifelong learning: все рассуждения оцениваются на предмет того, насколько они оказались успешными в реальной жизни, и эта успешность или неуспешность тоже идёт как входной материал для мышления. При этом времени на мышление (познание и обучение) не хватает в живой природе, и по итогам рассуждений при действиях во время бодрствования познание идёт ещё и во сне (мозг пересматривает записи того, что там происходило в ходе практики и использованных в практике рассуждений и доучивается: перестраивает мастерство, улучшает его).
Так же рассматриваем мышление и рассуждение в ходе творчества и импровизации (помним, что там обычно участвует какой-то генератор случайностей, меняющий рассуждения), познание с подкреплением, познание на основе принципа свободной энергии (есть и такие объяснения познания живыми существами)[2].
Конечно, мышление в его SoTA варианте (с выходом на осознанность в использовании каких-то новых понятий из новых полученных обучением или исследованиями объяснений/теорий/моделей) в мире встречается сильно реже, чем простые рассуждения. СМД-методологи любят говорить, что «чистое мышление» так же часто встречается в мире, как танцы лошадей. А как же люди занимаются какой-то деятельностью? Они мыследействуют!
Вычислений интеллекта, то есть мышления у человечества по объёму не так много. Это главным образом рассуждения с использованием трансдисциплин (логики, онтологии, системного мышления и т.д.). Но эти вычисления таки бывают. Основной объём «думания», прикладных рассуждений на планете — это мыследействование/вывод/рассуждение по правилам с использованием плодов интеллекта: обеспеченного/enabled интеллектом мастерства как прикладных теорий/дисциплин/моделей/объяснений по решению каких-то классов задач, для которых понятна понятийная структура. Нет затыков в (мысле)деятельности — мозг работает в режиме автомата, лёгкий режим с использованием быстрого интуитивного режима работы мозга-вычислителя S1 (как это было описано в книге Д.Канемана «Думай медленно… решай быстро»[3]). Случился затык, найдена проблема — включается медленный режим работы мозга S2, который за счёт падения скорости и вывода рассуждения в сознание (помним, что сознание управляет вниманием!) гарантирует выполнение правил рассуждения, то есть использование заведомо известных операций с заведомо известными объектами, которые определяются какой-то дисциплиной. Или же такое медленное осознанное рассуждение с использованием трансдисциплин будет в рамках мышления, занимающегося поиском правил для какой-то прикладной дисциплины, которую должен создать интеллект.
У мыслителей, которые главным образом вырабатывают новые понятия (наука, да и существенная часть инженерии) познания/мышления/learning много. А вот у каких-нибудь клерков среднего звена — понятийной работы ноль, сплошные «рассуждения на полном автомате», вот их и списывают за ненадобностью, заменяют компьютерами, это легко. Пока ещё плохо понятно, как заставлять заниматься мышлением компьютер, поэтому интеллект тут берётся у разработчиков софта со всем их искусством исследования рассуждений в ходе выполнения каких-то прикладных практик (методологическая работа) и пересадки найденных правил рассуждений в компьютер (программная инженерия). Но хорошо известно, как потом заставить рассуждать компьютер, когда его уже научили делать рассуждения (то есть «разработали софт»). Софт типа Bing, Bart, прочие «нейросетевые ассистенты» как-то пытаются решать эту проблему полноценного компьютерного мышления, но это ещё не слишком надёжно и плохо работает для ответственных приложений. Из компьютеров пока получаются плохие методологи, они плохо описывают новые деятельности, плохо предлагают новые понятия. В любом случае, ситуация быстро меняется, ибо человеческий и машинный интеллект задействуются не по одиночке, а совместно — и вот эта связка работает уже много надёжней.