Интеллект врождённый и приобретённый
Сам Chollet предлагает шкалу универсальности в решении разных классов проблем как силы интеллекта использовать для оценки систем сегодняшнего машинного/искусственного интеллекта. Люди не работают голыми мозгами в разработке чего бы то ни было, они задействуют компьютеры — системы автоматизации проектирования, программы имитационного моделирования, нейронные сети как универсальные аппроксиматоры и т.д. В своей работе по измерению силы интеллекта Chollet выделяет такие подсмотренные у человеческих младенцев элементарные функции как
- умение выделить объект по связности в его представлении в окружающем мире,
- отслеживать этот объект в мире при его перемещениях,
- отслеживать влияние объектов друг на друга,
- умение преследовать какую-то цель,
- умение считать,
- какие-то умения в области геометрии и топологии — типа распознать симметрию в объекте, или выделить прямую линию или прямой угол.
Эти врождённые способности как частное мыслительное мастерство (а интеллект, как мы помним, состоит из широких/трансдисциплинарных способностей!) и составляют по его мнению «аппаратную» основу человеческого интеллекта, остальному люди учатся с использованием этих врождённых способностей. Другие исследователи соглашаются, что какие-то функции у человека как носителя сильного/широкого интеллекта реализованы аппаратно лучше и связывают их со сложной структурой мозга, которая оказывается связана ещё и с генами, кодирующими microRNA[1]. Геном — это тоже «софт», который «исполняется», приводя к разворачиванию полноценного человеческого мозга (или осьминожного мозга, хотя там интеллекта меньше, но больше, чем у мозга тараканов — аппаратура таки важна!). А затем на этой аппаратуре реализуются те или иные «виртуальные аппаратуры», алгоритмы интеллекта. Как любят повторять специалисты по компьютерным архитектурам, «граница между программным и аппаратным обеспечением обычно размыта».
Мы согласны с Chollet, что у выросшего в цивилизованном мире человека интеллект состоит из:
- врождённых способностей**/мыслительного мастерства**, которые «аппаратно» имеются в мозгу человека и определяются генетически, являются результатом биологической эволюции. Эти врождённые способности могут быть использованы как основа для дальнейшего усиления интеллекта через предобучение трансдисциплинарным рассуждениям. Простые тесты из набора IQ должны быть связаны именно с врождёнными способностями, хотя на деле это и не соблюдается. Врождённые способности определяются генетически, и не так много можно сделать, чтобы их усилить обучением, хотя мозг пластичен и в какой-то мере может менять свою структуру для упрощения решения каких-то часто встречающихся задач. Кошку не научишь читать, сколько ни учи, речь об этом. Человека тоже научить можно явно не всему. В любом случае, речь идёт об интеллекте, именно поэтому про детей с большим IQ говорят «талантливый в одном будет талантлив и в другом», это прямо совпадает с определением сильного интеллекта: «универсальный талант», а не «талант к одному классу задач». Это и есть тот самый «фактор G», фактор самых общих способностей к обучению, доступных человеку. Дальше можно обсуждать, насколько это должно сопровождаться какими-то другими наследуемыми способностями. Например, усидчивость оказывается связана с талантом[2]: кому-то скучно потратить на какое-то действие 10 часов, а кому-то нет — и вот этот второй при том же интеллекте вдруг получает дополнительное преимущество, его нейронная сетка научится что-то делать лучше при той же аппаратуре, и это тоже наследуемое свойство!
- Выученных**/приобретённых** способностей**/мыслительного мастерства**, получаемых предобучением каким-то трансдисциплинам. Приобретённое мыслительное мастерство отличает людей с хорошим образованием от людей с плохим образованием: они оказываются «более талантливыми» (потому как правильно образованы, а не потому образованы, что оказались более талантливы!). Люди с хорошим образованием могут потом выполнить быструю подстройку своих знаний под новый проект, быстро освоить новое мастерство, разобраться с новым делом. А то и без подстройки: если окажется, что речь идёт об использовании каких-то универсальных умений (трансдисциплин), то и без подстройки можно справиться. А с плохим образованием люди тоже могут разобраться с новым делом, но это происходит медленно, их интеллект слабей. Почему медленно? Потому что им приходится не просто подстраивать свои знания, им приходится ещё для этого и дополнительно предобучаться, часто очень неоптимальным образом, без использования трансдисциплин как накопленного цивилизацией опыта предыдущих поколений. Представьте, что взрослый дикарь приехал из джунглей, где он только охотился и собирал растения. Сколько времени ему нужно потратить, чтобы стать инженером? Он даже в вуз пойти сразу не сможет, ведь у него не будет даже школьных знаний! Речь сразу идёт о многих годах, которые люди тратят на обучение трансдисциплинам. Это ничем не отличается, по большому счёту, от обучения нынешних версий AI, которых сначала долго и много учат «в школе», чтобы получить «большую языковую модель» (large language model, это обучение pretraining), затем обучают их более узким предметным областям (это finetuning), и только затем уже обучают совсем узким условиям ситуации, давая им какое-то задание с подробным описанием (in context training, prompt engineering).
Отдельно нужно обсудить: а можно ли вот так накапливать знания, передавая их от чему-то самостоятельно научившихся людей и AI к ещё не научившимся, да ещё и не лично, а через главным образом разные тексты с редкими картинками (даже не видео)? Можно ли целенаправлено провести «предобучение» для людей, грубо говоря, не заставлять их сразу «жить и работать», а обучая в школе и вузе? Или же каждый человек должен накапливать все знания «на опыте жизни», как-то самостоятельно? Были проделаны эксперименты, показывающие, что передача знания от поколения к поколению вполне возможна, и эта передача идёт на естественном языке, которого оказывается вполне достаточно. Необязательно учиться всему «с полного нуля», набивать себе собственные шишки на собственных неудачах, теряя на это много времени, можно получить опыт современников или даже предыдущих поколений из культуры, в том числе получить нужное знание через текст[3] — и сразу начинать приобретать новый опыт, которого ещё не имели предыдущие поколения исследователей мира, предыдущие поколения инженеров, менеджеров, предпринимателей. И ровно то же самое происходит с искусственным интеллектом, все современные «умные чат-боты» учатся на огромных наборах текстов прежде всего.
В принципе, огромное число проблем можно решать просто методом перебора разных вариантов решения (оставим вопрос о качестве воображения, чтобы предлагать достаточное число и разнообразие вариантов). Этот метод перебора называется методом проб и ошибок. Это основной метод работы многих и многих людей, tinkering/возня как в «он возится с автомобилем», это подчёркивается в книге Нассима Талеба «Антихрупкость». Но возня/«метод проб и ошибок» срабатывает увы, за огромное время и с потреблением огромных материальных ресурсов. Ещё ведь придётся найти то, что нужно будет перебирать, заранее ведь это тоже неизвестно — и перебирать приходится по огромным цепочкам создания. Вы бы догадались, что антибиотики помогают против бактерий в те времена, когда само понятие бактерии было ещё неизвестным? Проблема поиска антибиотиков не могла быть даже поставлена! Догадались бы, что надо использовать радиотриод в качестве логического элемента в вычислительной машине времён Бэббиджа, чтобы получить электронно-вычислительную машину, а не механо-вычислительную или пневмо-вычислительную? Время «возни» можно резко сократить, если возиться с какими-то уже известными из культуры предметами (например, «возиться с микропроцессором», а не возиться с очищенным кремнием в надежде, что в итоге этой возни появится какой-то компьютер, или возиться с разными сортами стали, в надежде, что когда-то из этой возни появятся огромные стальные ракеты Starship и Super Heavy. Нет, «с чем возиться» в методе проб и ошибок тоже зависит от уже накопленного человечеством знания.
Многие сегодняшние проблемы не могут быть решены сегодняшними плохо сконструированными (а эволюция ведёт к отнюдь не оптимальным «врождённым» решениям по части интеллекта[4]!) и плохо обученными (образование в мире отнюдь не идеально) людьми и машинами. Так что нужно усиливать интеллект, чтобы продолжать эволюцию (как техно-эволюцию, так и биологическую) и исправлять замеченные ошибки.
Представьте, например, что мы ещё не знаем, что такое «свет», а ведь первые микроорганизмы этого не знали! Или не знаем, что такое спин[5] (который используется в спинтронике[6]), про который догадались только в 1924 году, меньше ста лет назад. Если мы мало знаем о структуре мира, то требуется огромное время интенсивных выходящих в мир для проведения экспериментов рассуждений, чтобы узнать о каких-то проблемах, а затем их решить. И ещё надо узнать о правилах рассуждений, которые ведут к рассуждениям без ошибок, логика у человечества тоже прошла долгий путь развития.
Если мы хотя бы частично что-то знаем о структуре мира (всегда частично, всегда мало, даже через десять тысяч лет это будет «частично» и «мало», развитие бесконечно!), это бы в десятки, тысячи, миллионы раз уменьшило количество вычислений/мышления интеллекта по выработке мастерства в решении связанного с этой особенностью структуры мира класса задач.
Скажем, какую-то проблему мы можем решить человеческим мозгом за десять тысяч лет интенсивных размышлений. Это побольше, чем время существования человеческой цивилизации. Но если мы сделаем какие-то удачные догадки/гипотезы/guesses/предположения о структуре задачи и её предметной области, и они снизят объем вычислений в десять тысяч раз, то проблема будет решена всего за год. И можно будет переходить к следующим, более сложным проблемам.
Ускорение в десять тысяч раз по сравнению с «вознёй» возможно? Бывает ли ускорение на порядки величины по сравнению с «обычной скоростью решения задач»? Да, бывает! Так, квантовые компьютеры уже в определённых классах алгоритмов несравнимо (на много порядков величины) быстрее классических компьютеров, и это квантовое превосходство/quantum supremacy[7] быстро увеличивается. Или в 2021 году было предложено ускорение на несколько порядков скорости обучения игры в видеоигры для алгоритмов обучения с подкреплением, и были достигнуты скорости обучения примерно такие же, как у человека. Буквально десяток лет назад речь шла о проблеме, которая вообще не решалась, компьютер не мог обучаться игре в видеоигры! Потом мог обучаться, но требовались огромные вычислительные мощности, и дело было хуже, чем у человека примерно в десять тысяч раз, требовался суперкомпьютер. И вот задача решена предложением нового алгоритма, использующего догадки о структуре знаний при игре[8].
Цивилизация (и особенно в ней наука, она ровно этим и занимается) даёт нам разной степени удачности общие предположения о структуре абстрактного (математические объекты) и физического мира и учит формулировать проблемы. Это приобретённый, выученный интеллект: он позволяет решать задачи в десятки тысяч (а то и более) раз быстрее, чем это могло бы быть сделано необученным структуре окружающего мира интеллектом как «аппаратной» частью мозга «дикого» человека, не получившего образования. Цивилизованный человек, мозг, интеллект (это всё вложенные части, в быту мы используем все выражения) — это обученный, образованный человек, мозг, интеллект. Цивилизованный интеллект (мозг, человек) содержит в себе не только врождённые мыслительные способности, врождённое мыслительное мастерство, но и приобретённое/выученное. Интеллект цивилизованного человека оказывается не таким уж естественным: часть его «аппаратна», но часть «программна», прошита цивилизацией в мозгу — это ничем не отличается от любого другого вычислителя. Интеллект смартфона тоже есть врождённый (аппаратный, от микропроцессора конкретной марки), а есть приобретённый — от прошивки производителя, и от конкретного мастерства его прикладных программ. Другое дело, что интеллект смартфона очень слабый, ибо микропроцессор его очень ограниченной производительности, даже с учётом того, что в современных моделях смартфонов используются аппаратные ускорители для нейросетей, да ещё и алгоритмы прошивок абсолютно не универсальны в части возможности решения разных классов проблем.
Помним, что сила интеллекта в его универсальности, а для универсальности нужна скорость работы вычислителя и разнообразие его алгоритмов: есть теорема отсутствия бесплатного обеда/no free lunch theorem, в которой говорится, что один алгоритм не может быть универсально эффективным для всех классов задач, поэтому для универсальности требуется много разных алгоритмов работы вычислителя. Об этом подробней говорится в книге Педро Домингоса «Верховный алгоритм», которую мы рекомендовали для начального знакомства с подходами к конструированию машинного интеллекта как вычислителя с универсальным (master, верховным) алгоритмом.
Итого: приобретение нового мастерства и у человека, и у AI, и у компании не через чисто «природную смекалку» человека, AI или коллективную смекалку людей и компьютеров в компании, а через «облагороженную образованием смекалку», через получаемые из культуры путём «импорта» готового знания о структуре мира и структуре задач — и уже к этим «импортированным» знаниям предобучения добавляется «возня»/tinkering, «опыт».
https://www.economist.com/science-and-technology/2014/07/05/practice-may-not-make-perfect ↩︎
Посмотрите примеры неоптимальности эволюционных решений. Всё работает, но крайне неэффективно, ибо наследуются какие-то черты конструкции из предыдущих поколений. Скажем, у рыб не было шеи, и гортанный нерв от мозга к горлу шёл по оптимальной прямой траектории, у человека с этим уже плохо и не оптимально, нерв «возвратный», ибо проходит через петельку кровеносных сосудов около сердца а у жирафа такая петелька вообще вызывает удивление своей неоптимальностью: https://ru.wikipedia.org/wiki/Возвратный_гортанный_нерв. Ни один рациональный конструктор такого бы не допустил! ↩︎